

Innovation: O3b's New Satellite Technology & Services in the Pacific

PRFP–10 Satellite Connectivity Workshop Fiji 24 April 2017

O3b's customer's customers

O3b's Non-GSO Satellite Constellation – Fiber without the Cable

- Circular equatorial orbit at 8062 km altitude (MEO)
- O3b's global spectrum use today:
 - Uplink: 27.6-28.4; 28.6-29.1 GHz
 - Downlink: 17.8-18.6; 18.8-19.3 GHz
- 12 satellites in non-geostationary orbit at 8062 kilometers
- Beam size: ~700 km diameter on the ground

O3b Delivers "Fiber Speed, Satellite Reach"

9 gateways connect customers to the internet

O3b Networks Proprietary

Fiber-like latency and capacity: - Under 150 ms roundtrip - 2 Gbps per beam

This drives end-users to our customers

Prioritizing Satellite Sweet Spots

Satellite's ability to cost-effectively provide coverage and capacity will be extended to 5G

O3b serves large customers and governments

O3b provides the "middle mile" to connect local operators to the internet via one of our 9 world-wide gateways

Islands and Remote Cities

ISPs , Telcos and Governmental Demands

Universities

Fiber Redundancy

 Resiliency Option for Larger City ISP and MNO O3b Networks is the Fastest Growing Satellite Operator in History

Corporate (private networks)

- Resorts, Remote Factories & Datacenters
- Big Events

Oil, Gas, Mining

 Latency is Key in the Digital Oilfield and remote operations

A Revolution in Backhaul

Digicel, Papua New Guinea

Telecom Cook Islands, Cook Islands

Oi/Timor Telecom, East Timor

ASTCA, American Samoa

Improved QoE

PNCC, Palau

Improved Reliability

Increased ARPU

Reduced Churn

O3b currently serves Royal Caribbean Cruise Lines (RCCL) which operates Asian and South Pacific cruises

Other cruise lines are considering using O3b & SES capacity on their fleets

O3b connects oil & gas platforms

O3b connects remote cities

Peacekeeping forces are using O3b in 8 sites in Central Africa

An ISP in Brazil's Amazon river basin is using a single O3b beam to connect nearly 500,000 people

O3b connects islands

Most of the South Pacific island nations now use an O3b beam:

American Samoa FSM - Yap Cook Islands Christmas Island **East Timor** Kirbati Nauru Norfolk Island Palau Papua New Guinea Samoa Solomon Islands Vanuatu

The Galapagos and Easter Island both have O3b coverage, also.

The challenge:

A disbursed population still needs connection

East Timor:

- Latency decreased
- Throughput increased
- QoE increased

Palau:

- spike in Internet adoption
- Helped create new solutions for consumers, schools, the tourism industry

Solomon Islands:

- fiber-equivalent throughput capability has led to rapid uptake in data usage
- University of the South Pacific and Solomon Islands National University have enabled:
 - distance education
 - live ultra-HD video streaming
 - high-speed downloads
 - cloud-based applications
 - crystal clear voice calls

Globally Harmonized Spectrum

O3b efficiently reuses Kaband spectrum and protects GSOs/terrestrial services

- Satellite is a truly international industry and harmonized allocations allow it to take advantage of economies of scale
- Stable global access to set frequency bands will bring down the cost of service and encourage innovation
- Regulatory certainty is necessary for new technologies

Innovative Technology requires Innovative Regulatory Approaches

"Groundbreaking" technology will bring broadband to all – but will require Regulators to break new ground as well:

- New orbits (Non-geostationary)
- New frequency bands (Ka, Q, V)
- New services (ESIMs)

Every country regulates differently...

- Some have minimal/no regulations
- Some have complex regulations:
 - Formal application;
 - Public consultation
 - Homologation/type approval
 - Local permits; import reg's
 - Initial/monthly/annual fees
 - Annual/quarterly reporting

Regulators can be Efficient and Effective with:

- Harmonized rules;
- Common application forms;
- Free circulation of terminals;
- A common register of operators

