

Test Plan & Procedures for Measurement of WiMAX to FSS Interference

[Addendum to SUIRG WiMax Field Test Report]

Pre	pared	bv:

Adam Edwards, SES-NewSkies/SUIRG Robert Ames, SUIRG Kenneth Carrigan, US Navy NSWC Dahlgren

Reviewed and approved by:

- SUIRG
- WBU/ISOG
- GVF
- NABA
- US Navy
- SAP-REG
- WTA

Test Plan and Procedures for Measurement of WiMAX to FSS Interference

Objective:

Measure the interference level generated by WiMAX transmission into a Fixed Satellite Service (FSS) satellite receiving station by taking measurements of C/N, BER and digital power of a test satellite channel. The testing was performed in 2 phases where during phase 1 the FSS antenna was fixed and a WiMAX subscriber unit was moved to several locations with various angles and distances to the FSS antenna. During Phase 2 the WiMAX base antenna was fixed at a height of 50 meters on a tower and the FSS antenna was moved to several locations with various angles and distances from the WiMAX antenna. Figure 1 shows the typical test set-up for both phases.

Test Equipment and Set Up

The following equipment was used during the test. The connection of test set up is shown in Figure 1. The specification of antenna system and WiMAX equipment are given in <u>Appendix 1</u>.

Item	Description	Manufacturer	Model
(a)	2.4-meter Diameter Antenna with C-band Dual Feed horn	Prodelin	Series 1244
(b)	LNA in 3.4 – 4.2 GHz Band	Vertex/RSI	LCC4S30
(c)	Down Converter	Novella SatComs	BD500 Series
(d)	Coupler	Narda	
(e)	WiMAX Base Station Equipment	Proxim	3500-B00-AM0 – MP.16 3500
(f)	WiMAX Base Station Panel Antenna	Proxim	3338-A00-120
(g)	WiMAX Subscriber Station Equipment	Proxim	3500-S00-AM0 – MP.16 3500
(h)	WiMAX Subscriber Station Antenna	Proxim	3437-A00-018
(i)	Portable Handheld GPS	GARMIN	GPS 45XL
(j)	Spectrum Analyzer	H/P-ESA	4407B
(k)	Digital Satellite Receiver	Tandberg	1260 Mpeg2-DVB
(I)	15" LCD Television Set	Polaroid	FLM-1511
(m)	Power Inverter		
(n)	Misc. cables & connectors		

Test Methodology

The interference effect to satellite signal reception from Satellite NSS 806 @ 319.5E was measured in this test during phase 1 and phase 2. The testing was done in two phases at two difference locations: Phase 1 was done in Punta Gorda, Florida where the WiMAX transmitter was located at several different locations while the FSS antenna remains fixed. Phase 2 was conducted in the Maryland and Virginia area where the WiMAX antenna was mounted on a tower at 50 meters and the FSS antenna moved to various distances and angles from the WiMAX antenna.

WiMAX frequencies used for the test are detailed in the following test procedure. The C/N, BER and digital power of a video program channel was measured directly at the LNA output. The data collected was reviewed and compared with that of theoretical analysis.

The following outlines the steps involved in the test. The detailed test procedures are provided in <u>Appendix 1</u>.

Phase 1- Punta Gorda, Florida

- A carrier was transmitted from a known location on Satellite NSS 806, utilizing various modulation and coding techniques.
- Aligned the satellite antenna to receive video program channel at 3,515 MHz.
- Measured at the D/C output the C/N, BER and digital power of the carrier @ 3,515 MHz to establish a baseline.
- Located the WiMAX transmitter at varying distances and angles relative to the satellite antenna using the GPS and make a measurement at each angle and distance.
- Adjusted the WiMAX transmitter to various frequencies and various output power levels.
- Measured the C/N, BER and digital power of the received signal at the D/C output and record the TV picture quality.
- Measured, with the spectrum analyzer, the WiMAX transmitter output power level within the immediate area of the C-Band antenna at the assigned WIMAX test frequency.

Phase 2- Maryland and Virginia Area along the Potomac River

- A carrier was transmitted from a known location on Satellite NSS 806, utilizing various modulation and coding techniques.
- Aligned the satellite antenna to receive video program channel at 3,515 MHz.
- Measured at the D/C output the C/N, BER and digital power of the carrier @ 3,515 MHz to established a baseline.
- Located the WiMAX transmitter antenna at an elevation of 50 meters on a tower.
- Made measurements at the FSS antenna at varying distances and angles relative to the WiMAX antenna.
- Adjusted the WiMAX transmitter to various frequencies and various output power levels.
- Measured the C/N, BER and digital power of the received signal at the D/C output and recorded the TV picture quality.
- Measured, with the spectrum analyzer, the WiMAX transmitter output power level within the immediate area of the C-Band antenna using a unity gain handheld antenna at the assigned WIMAX test frequency.

Test General Notes

- 1. This procedure was verified and agreed upon by the following organizations:
 - SUIRG: Satellite Users Interference Reduction Group
 - WBU-ISOG: World Broadcasting Union Inter Satellite Operations Group
 - GVF: Global VSAT Forum
 - SAP-REG Satellite Action Plan Regulatory Working Group
 - NABA: North American Broadcasters Association
 - US Navy: NSWC Dahlgren
 - WTA: World Teleport Association
- 2. The entire testing process could be witnessed by any interested party involved in the Satellite Industry.
- 3. The "TV Picture Quality" result was based on the following:
 - Grade 1: Excellent Broadcast quality
 - Grade 2: Occasional Blocking, poor BER
 - Grade 3: Frequent Blocking, Emergency Broadcasts only
 - Grade 4: Unusable
- 4. Procedural steps A—J were to be repeated upon the insertion of the band pass filter to address the problem of LNA saturation; however, the LNA never saturated.
- 5. Spectrum Plots from the Analyzer were taken at every point during procedure using the following settings:
 - Span: 50Mhz
 - RBW: 100Khz
 - VBW: 1Khz
 - 5dB/div (or a more applicable as deemed necessary during the test)
 - Max hold or Video Averaging Techniques may be used if deemed necessary
- 6. Data Sheet Definitions
 - Site ID: Remote terminal location where measurements were made
 - Nominal C/I₀ @ LNA: Carrier to Interference Ratio at LNA output with no WiMAX Carrier present.
 - TV Picture Quality: See note 3
 - C/N (dB) WiMAX: Carrier to Noise Ratio of WiMAX transmit carrier
 - RX BER: Receive Bit Error Rate as measured by the receiver
 - C/I (d/B) LNA: Carrier to Interference Ratio @ LNA output with WiMAX carrier present
 - <u>A</u> I @ LNA: Difference in Interference level with and without WiMAX carrier present

Figure 1: Typical test set-up

Test Procedures

Phase 1

Phase 1 was conducted in Punta Gorda, Florida where the WiMAX transmitter was located on a mobile platform (consisting a boat and an automobile) at a slightly elevated level of about 4 meters while the FSS antenna remained at a fixed location.

Punta Gorda is a residential community of canals and single level homes. The geography of this community allowed the WiMAX system to be located at various distances and angles to the FSS antenna through the use of a boat and an automobile (see figure 2 for picture of FSS antenna and remote test site locations). The Phase 1 testing process encompassed:

- A video carrier transmitted from the SES owned facility at Manassas, Virginia on satellite NSS 806, with the following operating parameters: Symbol Rate: 6532 Ksymbols, QPSK, FEC ³/₄
- The satellite FSS antenna was aligned to receive the video test transmission at 3,515 MHz
- The receive C/N of the test video carrier was approximately +10 dB
- The BER and digital power of the carrier were measured at the output of the Block Down Converter to establish a baseline measurement
- The WiMAX transmitter and omni-directional antenna were fixed to a mobile platform
- Various measurements were taken while the WiMAX transmitter was relocated to varying distances and angles relative to the satellite FSS antenna
- Both frequency and power level adjustments were made to the WiMAX transmitter
- Both C/N and BER values along with picture quality and spectrum analyzer measurements were also taken at the output of the block down converter
- The final test during phase 1 utilized a directional WiMAX antenna with 18 dB gain

Figure 2: Phase 1 Test Location Final Sites WiMax Test Plan Procedures

Phase 1: FSS Antenna and Remote WiMAX Test Locations

FSS Antenna	N26 °54'13.6"
Location	W82°03'47.8"

As the measurement process continued it became apparent that some pre-selected sites would not have provided any usable information and that additional locations were defined to provided additional data to support previous measurements. As a result, the sites as defined in the above chart were the actual measurement sites.

Phase 2

The Maryland and Virginia areas along the shores of the Potomac River allowed for longer distance testing while maintaining a direct line-of-sight between the WiMAX antenna and the FSS system (see figure 3 for picture of FSS antenna test set-up location and figure 4 for the water tower where the WiMAX hub antenna was installed). Figure 5 provides an overview of the Phase 2 sites including the water tower and the 2 FSS test sites identified as short and long to distinguish the distances of 3.5 km and 12 km, respectively.

Figure 3: Phase 2 WiMAX antenna location

Figure 4: Phase 2 test locations

P	hase	2	Antenna	Locations
	11030	~	Antenna	LUCATIONS

WiMAX antenna on Water Tower	N38°20'12" W77°12'32"
ECC Antonno Chort	$N_{100} = 0.1^{2} = 0.1^{1} = 0.1^{1}$
roo Antenna Short	N30 21 30 VV// 13 11
ESS Antenna Long	N38°23'47" W77°19'03"
r ee / alternia zenig	

The Phase 2 testing process encompassed:

- A carrier transmitted from an SES owned facility in Manassas, Virginia on the NSS 806 satellite @ 319.5 East, with the following operating parameters: Symbol Rate: 6532 Ksymbols, QPSK, FEC ³/₄
- The WiMAX antenna and hub transmit equipment were located on a water tower (approximately 50 meters elevation) along the shores of the Potomac River in Northern Virginia
- The satellite FSS antenna was mounted onto a mobile platform and aligned at the various locations to receive the test carrier at 3,515 MHz
- The receive C/N of the test carrier was approximately 10 dB
- The BER and digital power of the carrier were measured at the output of the Block Down Converter to establish a baseline measurement
- The FSS antenna was relocated to varying distances and angles relative to the WiMAX antenna and a measurement was made at each location

Operational Test Procedures

Tests were conducted using various different operational modes as described below:

Step	Operationa	Operational Test Procedure						
#								
	Satellite Nar	ne & Orbit	al Locatior	n: NSS 806				
	Align the satellite antenna to receive video carrier at 3,510 MHz and measure.							
A1	Set the WiM	IAX transm	nitter to trai	nsmit : MHz	Z			
		a) 3400	b) 3450	c) 3500	d) 3550		e) 3600	
A2	Set the outp	out of the V	VIMAX trar	smitter to:	dBm			
		a) 5	b) 10		c) 15	d) 20	e) 25	
A3	Locate the V	cate the WIMAX transmitter from Satellite Antenna: Meters						
		a) 20	b) 75	c) 150	d) 300		e) 500	f) 1000
A4	Nominal angle of WIMAX transmitter towards FSS antenna dependent upon available							
	locations. D	egrees				-	-	
		a) 0	b) 45	c) 90	d) 135		e) 180	

For the purposes of this test, particular attention was paid to the following:

- i. Output level from the WIMAX transmitter (A2)
- ii. Distance of the WIMX transmitter from the Satellite antenna.(A3)
- iii. Angle of WIMAX transmitter from Satellite antenna bore sight (A4)

If required, testing will also be conducted using different transmit frequencies from the WIMAX transmitter.

Sample of Test Procedures and Measurement Data Sheet

I. <u>Test Configuration: A1B1C1</u>: WIMAX transmitter **3400 MHz** @ **5 dBm** w/ 20 meter distance and various angles

Step #	Procedures	Procedures				
	Align the sa	tellite antenr	a to receive @ 3	,510 MHz and take	measurement.	
A1	Set the WI	AX transm	itter to transmit	3400 MHz		
B1	Set the out	put of the W	/IMAX transmitt	er to 5 dBm		
C1	Locate the	WIMAX tran	smitter 20 mete	ers from Satellite A	Intenna	
D1-4	Angle of WI	MAX transm	itter towards FSS	S antenna- Test site	e IDs A1, A2, A3, A4	
E	Measure Re	esults and re	cord below			
Results						
Site ID	TV Picture	C/N (dB)	BER	C/N (dB)	WiMAX power @ Satellite	
	Quality	WIMAX	Rx Signal	LNA	Antenna (dBm)	
A1						
A2						
A3						
A4						

Test Configuration A1B2C1: WIMAX transmitter @ 10 dBm w/ 20 meter distance and various angles

Results					
Site ID	TV Picture Quality	C/N (dB) WIMAX	BER Rx Signal	C/N (dB) LNA	WiMAX power @ Satellite Antenna (dBm)
A1					
A2					
A3					
A4					

Test Configuration A1B3C1: WIMAX transmitter @ 15 dBm w/ 20 meter distance and various angles

Results					
Site ID	TV Picture Quality	C/N (dB) WIMAX	BER Rx Signal	C/N (dB) LNA	WiMAX power @ Satellite Antenna (dBm)
A1					
A2					
A3					
A4					

Test Configuration A1B4C1: WIMAX transmitter @ 20 dBm w/ 20 meter distance and various angles

Results					
Site ID	TV Picture Quality	C/N (dB) WIMAX	BER Rx Signal	C/N (dB) LNA	WiMAX power @ Satellite Antenna (dBm)
A1					
A2					
A3					
A4					

Test Configuration A1B5C1: WIMAX transmitter @ 25 dBm w/ 20 meter distance and various angles

Results					
Site ID	TV Picture	C/N (dB)	BER	C/N (dB)	WiMAX power @ Satellite
	Quality	WIWAX	Rx Signal	LNA	Antenna (dBm)
A1					
A2					
A3					

APPENDIX 1: Equipment Specifications

Appendix 1A: Antenna System Equipment Specifications

1A-1: Receive 2.4 meter FSS Antenna (Prodelin Model 1244)

See specification sheet Annex 1C.

1a-1.1 Receive FSS Antenna subsystems:

- 1a-1.1.1 C-band Dual Feed horn
- 1a-1.1.2C-Band down-converter (Novella SatComs Model BD511)
See specification sheets Annex 1D
- 1a-1.1.1.3 LNA in 3.4 4.2 GHz Band (Model Vertex/RSI LCC4S30) See specification sheets Annex 1E.

1A-2: WiMAX Base Station Panel Antenna (Proxim Model 3338-A00-120)

Description: Outdoor 13 dBi, 120° Sector antenna for the 3.3-3.8 GHz frequency range. The 13 dBi, 120° Sector antenna is ideally suited for use with the MP.16 3500 base station.

Specifications:

Electrical	
Part Number	3437-A00-018
Frequency Range	3300 MHz - 3800 MHz
VSWR	1.7:1 (max)
Gain	13 dBi
Polarization	Vertical
HPBW/horizontal	120°
Downtilt	8°
Power Handling	6W
Impedance	50 Ohm
Connect or Type	N-type Female
Mechanical & Environmental Spec	ifications
Dimensions	500 x 200 x 30 mm
Weight	1.5 Kg
Temperature Range	-45 ℃ to 70 ° C
Humidity	144h @ 95%
Survival wind speed	220 Km/hr
Lightning Protection	DC Grounded
Radome Color	Gray, White
Radome Material	Plastic

1A-3: WiMAX Subscriber Station Panel Antenna (Proxim Wireless Tsunami WiMAX MP.16 3437 Outdoor, 18 dBi Flat Panel Subscriber Antenna)

Description: Outdoor, 18 dBi Flat Panel antenna for the 3.3-3.7 GHz frequency range. The 18 dBi Flat Panel antenna is for use with the Proxim MP.16 3500 subscriber station.

Specifications: Electrical			
Part Number	3437-A00-018		
Frequency Range	3300 MHz - 3700 MHz		
VSWR	1.5:1 (max)		
Gain	18 dBi		
Polarization	Linear, vertical		
HPBW/horizontal	18°		
HPBW/vertical	18°		
Power Handling	20 W		
Impedance	50 ohms		
Connector Type	N-type Female		
Mechanical & Environmental			
Dimensions	305 x 305 x 25 mm		
Weight	1.5 Kg		
Temperature Range	-40 °C to 80 ° C		
Humidity	95% @ 55° C		
Survival wind speed	216 km/hr		
Lightning Protection	DC Grounded		
Radome Color	Gray - White		
Radome Material	PC, V-2		

APPENDIX 1B: WiMAX Base and Subscriber System Equipment Specifications

1.2.1 WiMAX Base Station (Proxim Tsunami 3500-B00-AMD) & Subscriber Station (Proxim Tsunami 3500-S00-AM0) Technical Specifications

Equipment description: Consists of an all-outdoor, single sector base station and multiple subscriber configurations (integrated antenna or N-Connector for external antenna), the Tsunami MP.16 series offers a scalable, WiMAX certified system for the 3.5 GHz frequency band.

		Tsunami [™] MP.16 Series Highlights			
Product Model		MP.16 3500			
Description	WiMAX Forum Certified [™] products for 3.5 GHz frequency band				
Applications		 Broadband last-mile access for metropolitan and rural areas 			
		 Voice, video and data transmission with optimal economics 			
		Security and surveillance			
Environments		 Service provider and municipal broadband networks 			
		Security and surveillance			
Key Features		Product complies with IEEE 802.16 - 2004 standard			
		WiMAX QoS for voice, voice, data			
		• All-in-one, outdoor base station delivers scalable solution by allowing single			
		sector deployments to grow into multi-sector deployments			
SPECIFICATIONS					
Frequency Band		3.40 - 3.60 GHZ			
Nireless Protocol		802.10-2004			
Q05 Socurity					
Security		• AES			
Form Factors		• Base: ODU N-connector			
		Subscriber station: ODU			
		N-connector or Integrated 21 dBi Antenna			
	1 2500	POD AMO MP 16 2500 Page Station			
	3500-	S00-AM0 – MP.16 3500 Subscriber Station			
WIMAX COMPLIANCE	IEEE 8	02.16-2004 (WiMAX profile 3.5T1)			
WARRANTY 1 Yes		r Parts and Labor			
FREQUENCY					
	TDD				
CHANNEL BANDWIDTH	3.5 MHz and 7 MHz				
INTEGRATED ANTENNA	Gain 18 dBi (3.500 dBi only)				
ANTENNA PORT	Connector N-Female, 50 ohms				
PORT	Stand	ard 10/100 Base-IX Ethernet, Manual/Auto Negotiate, Half/Full Duplex,			
	NJ-40	,			
SERIAL PORT / GPS PORT	RJ-45 Connector				
NLOS & INTERFERENCE					
MITIGATION FEATURES	OFDM	1 256 FFT. Adaptive Modulation. FEC			
	_				
OUTPUT POWER	Lin to 21 dBm				
(AT ANTENNA PORT)					
	user /	Attenuation Control. Maximum be Output Power configurable to 5-21 IN One dB			
	sich				
MODULATION					

FRAME DURATION						
RADIO PERFORMANCE		Modulation & FEC	Rx Sensitivity (10 ⁻⁶)	Minimum C/I	Spectral Efficiency	Burst Data Rate, Mbps Tg/Tb = 1/16
	3.5 MHz	BPSK- 1/2	-95 dBm	4.5 dB	0.5 bps/Hz	1.4 Mbps
		QPSK- 1/2	-92 dBm	6.6 dB	1 bps/Hz	2.8 Mbps
		QPSK- 3/4	-90 dBm	8.9 dB	1.5 bps/Hz	4.2 Mbps
		16QAM- 1/2	-87 dBm	11.9 dB	2 bps/Hz	5.6 Mbps
		16QAM- 3/4	-84 dBm	15.2 dB	3 bps/Hz	8.5 Mbps
		64QAM- 2/3	-80 dBm	19.3 dB	4 bps/Hz	11.3 Mbps
		64QAM- 3/4	-78 dBm	21.3 dB	4.5 bps/Hz	12.7 Mbps
	7 MHz	BPSK- 1/2	-92 dBm	4.5 dB	0.5 bps/Hz	2.8 Mbps
		QPSK-1/2	-89 dBm	6.6 dB	1 bps/Hz	6.6 Mbps
		QPSK- 3/4	-87 dBm	8.9 dB	1.5 bps/Hz	8.5 Mbps
		16QAM- 1/2	-84 dBm	11.9 dB	2 bps/Hz	11.3 Mbps
		16QAM- ³ /4	-81 dBm	15.2 dB	3 bps/Hz	16.9 Mbps
		64QAM- 2/3	-77 dBm	19.3 dB	4 bps/Hz	22.6 Mbps
		64QAM- 3/4	-75 dBm	21.3 dB	4.5 bps/Hz	25.4 Mbps
LOCAL MONITORING	Serial/CLI RJ45 Port; Logging feature which logs to serial port, flash, RAM, or a syslog server					
REMOTE MONITORING	Telnet/CLI, HTTP, TFTP; SNMP v1, v2 (MIBII, Proxim MIBs, Bridge MIB, RIPv2 MPB, 802.16 MIB, Ether like MIB)					
REMOTE MGMT ACCESS	Wired-LAN or over-the-air					
PASSWORD	Multi-Level Password (user, administrator, installer, factory, engineering)					
SUBSCRIBER AUTHENT	X509v3 digital certificate; Radius Authentication and Provisioning; MAC Address Table					
VLAN	Support for 802.1Q VLAN tagging and filtering; Support for transparent passing of 802.1Q-compliant VLAN tagged frames					

QOS	Asymmetric Bandwidth: Uplink and Downlink CIR Control "committed information rate" per service flow Control: Uplink and Downlink MIR Control "maximum information rate" per service flow Packet Classification: 802.1D/802.1Q/802.1p priority, IPTOS, VLAN ID, IP source/destination address Capabilities: source/destination port, Ethernet source/destination address ,IP protocol, and Ether type Scheduling: Best Effort, Universal Grant Services, Traffic is scheduled per service flow, enabling min/max bandwidth, priority, jitter and latency control for voice, video and data			
	Outdoor Radio Unit (SS and BS)	Indoor Power Inje	ector	
OPERATING TEMPERATURE	-40° to +60℃	° to +40 °C		
WEIGHT	5.3 lbs	2.7 lbs		
DIMENSIONS	Packaged (BS, SSR): 14.57 x 13.70 x 8.19 in 5.12 x 3.62 x 2.64 in			
SAFETY STANDARDS	EN 60950 (CE) UL 1950 D3; CSA 22.2 N0.950 or CUL, VDE EN60950 or TUV.			
EMI STANDARDS	RSS-210 (Canada), ETS EN 301 489-1, 301 021, Conduction: FCC docket TS2 (SS), ETS 301 02ETS 3021 085 CS2 (BS) 20780 curve "B"ETS 302 . 085 VDE 0871 curve" B Radiation: FCC class "B"			
STATIONS	BASE STATION: Tsunami MP.16 Base Station Radio Indoor Subscriber Station Power Injector 4" Pole Mount Bracket Serial Dongle for Antenna Alignment Cable Termination Kit Quick Installation Guide CD-ROM containing User Documentation Indoor Base Station Power Injector	SUBSCRIBER STATION: Tsunami MP.16 Subscriber Radio (either with Type-N or Integrated Antenna 4" Pole Mount Bracket Cable Termination Kit Power Cord (for Indoor Power Injector) Printed Quick Installation Guide		
ACCESSORY AND SPARE KITS	Spare Power DC Injector (69823) Surge Arrestor 5 GHz - Standard-N Female to Female (5054-SURGE) POE (Power Over Ethernet) Surge Arrestor (70251);			

APPENDIX 1C: Prodelin Series 1244 Antenna System

Antenna Size:	2.4 M (8 ft.)
Operating Frequency Receive:	3.625 - 4.2 GHz
Midband Gain (+ .2dB) Receive:	38.0 dBi 38.0 dBi 47.6 dBi
Antenna Noise Temperature:	20° elevation 46 K
	30° elevation 45 K

Sidelobe Envelope, Co-Pol (dBi):

 $100\lambda / D \theta < 20^{\circ} 29-25 \log \theta \, dBi \, 29-25 \log \theta \, dBi \, 29-25 \log \theta \, dBi \, 20^{\circ} < \theta < 26.3^{\circ} - 3.5 \, dBi - 3.5 \, dBi - 3.5 \, dBi \, 26.3^{\circ} < \theta < 48^{\circ} 32 - 25 \log \theta \, dBi \, 32 - 25 \log \theta \, dBi \, 32 - 25 \log \theta \, dBi \, \theta > 48^{\circ} - 10 \, dBi \, (averaged) - 10 \, dBi \, (averaged)$

Cross-Polarization:	-30 dB on axis N/A -30 dB within B.P.E.
Axial Ratio Receive:	N/A 1.3 VAR (2.28 dB) N/A
VSWR:	1.3:1 Max. 1.3:1 Max. 1.3:1 Max.
Reflector Material:	Glass Fiber Reinforced Polyester SMC
Antenna Optics:	Four Piece, Prime Focus, Offset Feed
Mast Pipe Size:	6" SCH 40 Pipe (6.62" OD) 16.80 cm.
Elevation Adjustment Range:	5° to 90° Continuous Fine Adjustment
Azimuth Adjustment Range:	+ 30° Fine, 360° Continuous
Mount Type:	Elevation over Azimuth
Shipping Specifications:	484 lbs. (218 kg.)
Wind Loading Operational:	50 mph (80 km/h)
Survival:	125 mph (201 km/h)
Temperature Operational:	-40° to 140° F (-40° to 60° C)
Survival:	-50° to 160° F (-46° to 71° C)
Rain Operational:	1/2" /hr
Survival:	2" /hr
Atmospheric Conditions:	Salt, Pollutants and Contaminants as Encountered in Coastal and Industrial Areas
Solar Radiation:	360 BTU/h/ft2

APPENDIX 1D: Novella SatComs BD511 C-band Block Down Converter

INPUT SPECIFICATION	Opt	Options		
1. Frequency range:	3.4 to 4.2GHz	N1 .		
2. Connector:	SMA	N-type		
3. Impedance:	200dD			
	2200B			
	OED to 1 750MULT (shask madel			
5. Frequency range: 6. Connector:	SMA	N-type		
7. Impedance:	500	N type		
8. Return loss:	15dB typical	≥20dB ^(*)		
9. 1dB compression point:	+10dBm	-2008		
10. Third order intercept::	+20dBm			
TRANSFER CHARACTERISTICS				
11. Gain:	25d			
12. Gain ripple: over ±20MHz:	≤1dB p.t.p.			
over input band:	≤3dB p.t.p			
13. Gain 0 ℃ to 50 ℃:	±1d			
14. Gain slope:	≤0.02dB/MH			
15. Noise figure:	16dB typical			
LOCAL OSCILLATOR	5 15CH-			
17. Eroquopov stability 0°C to 5	5.15GHZ	Option 10^{-7}		
TT. Frequency stability, 0 C to 5		Option 2		
		Option 3!0°		
18. External reference:	TUMHZ, UdBm	JMHZ, UdBIII		
19 Image rejection:	> 75dB			
20. In-band spurious (at 0dBm	<-60dBc			
21. Out of band Spurious:	≤-40dBm			
PHASE NOISE				
22. 10Hz:	<-45dBc/Hz			
23. 100Hz:	<-70dBc/Hz			
24. 1KHZ:				
23. IUKM2: 26. 100kHz:	<-0500C/HZ ~-050Rc/Hz			
20. 100k12. 27 1MHz·	<-33000/112 <-110dRc/Hz			
28. Mains related:	<-60dBc			
MISCELLANEOUS				
29. Power supply:	115V/230V ±10%			
	50/60Hz ±10%, 30VA			
20 Tomporatives				
30. Temperature:	perating 0° to 50°C			
Sto	prage: -40° to 85°C			
31. Relative humidity: Or	31. Relative humidity: Operating: 0 to 90%			
Śtó	orage: 0 to 95%			
32. Summary alarm:	NO and NC dry relay	contacts via rear mount		
33. Summary alarm	Front panel LED			

.

Parameter	Notes	Min	Nom./Typ.ª	Мах	Units
Frequency Range	Band "C" Band "D"	3.6 3.4		4.2 4.2	GHz GHz
Gain		60	64	66	dB
Gain Flatness	Full band Per 40 MHz			±0.5 ±0.2	dB dB
VSWR	Input Output		1.20 1.20	1.25 1.50	:1 :1
Noise Temperature ^b	At +23 ℃ Versus temperature		See Table	Table 1	
Power Output at 1 dB compression	Standard Option 2	+10	2 +15		dBm dBm
3rd Order Output Intercept Point	Standard Option 2	+20 +20	+22 +26		dBm dBm
Group Delay per 40 MHz	Linear Parabolic Ripple	+30	+32	0.01 0.001	ns/MHz ns/MHz ² ns p-p
AM/PM Conversion	-5 dBm output power			0.1	%dB
Gain Stability (Constant Temp)	Short term (10 min) Medium term (24 hrs) Long term (1 week)			0.05 ±0.1 ±0.2	dB dB dB
Gain Stability	Versus temperature			±0.5	dB per ℃
Maximum Input Power	Damage threshold Desens. threshold, 5.825-6.425 GHz		- 0.05	0	dBm dBm
Connectors	Input Output Power		CPR 229G Flange	-10	
Power Requirements	Voltage Current, standard	MS3	Type N Female 112E10-6P (mate si	upplied)	V mA
Operating Temperature	Current, with Option 2	12	15 140	24 180	mA ℃
Notoc	-	-			

APPENDIX 1E: Vertex LNA Specifications. LC-4000 Series

Notes:

A: When there is only one entry on a line, the Nom/Typ column is a nominal value; otherwise it is a typical value. Typical values are intended to illustrate typical performance, but are not guaranteed.

B: Maximum noise temperature at +23 $\,^{\circ}\!\mathrm{C}$ at any frequency in the specified band.

###

For more information visit www.suirg.org or email info@suirg.org